中国电子标准协会培训中心

  
培训课程筛选
 首页 >> 资讯中心 >> 正文

如何利用FPGA进行时序分析设计

作者:不详 ; 发布时间:2017-7-5 7:52:07 ; 来源:互联网  点击:

 FPGA(Field-Programmable Gate Array),即现场可编程门阵列,它是作为专用集成电路(ASIC)领域中的一种半定制电路而出现的,既解决了定制电路的不足,又克服了原有可编程器件门电路数有限的缺点。对于时序如何用FPGA分析设计,本文将详细介绍。

  基本的电子系统如图 1所示,一般自己的设计都需要时序分析,如图 1所示的Design,上部分为时序组合逻辑,下部分只有组合逻辑。而对其进行时序分析时,一般都以时钟为参考的,因此一般主要分析上半部分。在进行时序分析之前,需要了解时序分析的一些基本概念,如时钟抖动、时钟偏斜(Tskew)、建立时间(Tsu)、保持时间(Th)等。时序分析也就是分析每一个触发器(寄存器)是否满足建立时间/保持时间,而时序的计的实质就是满足每一个触发器的建立时间/保持时间的要求。

    

  图 1 基本的电子系统

  一、时钟抖动和时钟偏斜

  1.时钟抖动

  时钟信号边沿变化的不确定时间称为时钟抖动,如图 2所示。一般情况下的时序分析是不考虑时钟抖动,如果考虑时钟抖动,则建立时间应该是Tsu+T1,保持时间应该是Th+T2。

    

  图 2 时钟抖动时序图

  2.时钟偏斜

  时序偏斜分析图如图 3所示。时钟的分析起点是源寄存器(Reg1),终点是目标寄存器(Reg2)。时钟在图中的结构中传输也会有延迟,时钟信号从时钟源传输到源寄存器的延时为Tc2s,传输到目标寄存器的延时为Tc2d。时钟网络的延时为Tc2s与Tc2d之差,即Tskew=Tc2d-Tc2s。

    

  图 3 时钟偏斜时序图

  二、建立时间和保持时间

  建立时间(Setup Time)常用Tsu表示,指的是在触发器的时钟信号上升沿到来以前,数据和使能信号稳定不变的时间,如果建立时间不够,数据将不能在这个时钟上升沿被打入触发器,使能信号无效,也就是说在这个时钟周期对数据的操作时无效的;保持时间(Hold Time)常用Th表示,指的是在触发器的时钟信号上升沿到来以后,数据和使能信号稳定不变的时间,如果保持时间不够,数据同样不能被打入触发器,对数据的操作同样是无效的,使能信号无效。数据要能稳定传输,就必须满足建立时间和保持时间的关系,图 4标识了它们间的关系。

    

  图 4 建立时间/操持时间的概念

  三、发送沿和捕获沿

  (1)发送沿(Launch Edge):前级寄存器发送数据对应的时钟沿,是时序分析的起点;

  (2)捕获沿(Latch Edge):后记寄存器捕获数据对应的时钟沿,是时序分析的终点。相对于launch Edge通常为一个时钟周期,但不绝对,如多周期。

  “信号跳变抵达窗口”:对latch寄存器来说,从previous时钟对应的Hold Time开始,到current 时钟对应的Setup Time 结束。

  “信号电平采样窗口”:对latch寄存器来说,从current时钟对应的Setup Time开始,到current时钟对应的Hold Time结束。

  launch寄存器必须保证驱动的信号跳变到达latch寄存器的时刻处于“信号跳变抵达窗口”内,才能保证不破坏latch寄存器的“信号电平采样窗口”。

    

  图 5 Launch Edge和Latch Edge

  四、数据和时钟的时序分析

  如图 6所示,为分析建立时间/保持时间的基本电路图。Tclk1为Reg1的时钟延时,Tclk2为Reg2的时钟延时,Tco为Reg1固有延时,Tdata为Reg1的到Reg2之间组合逻辑的延时,Tsu为Reg2的建立时间,Th为Reg2的保持时间,设时钟clk周期为T,这里分析数据的建立时间和保持时间。

    

  图 6 基本电路图

  1、建立时间的分析

  如图 7所示,建立时间的分析是以第一个launch Edge为基准,在Latch Edge查看结果。建立时间的裕量(T为时钟周期):

  Setup Stack = (T+Tclk2) – Tsu – (Tclk1+Tco+Tdata)

  假设△T = Tclk2-Tclk1,则:

  Setup Stack = (T+△T) – Tsu – (Tco+Tdata)

  可见△T<0影响建立时间,使建立时间的要求更加苛刻。因此对于△T尽量避免,采用同步单时钟,并且尽量采用全局的时钟信号,这样△T几乎为0,,△T的影响几乎不存在,可以忽略不计。

  如果建立时间的裕量Setup Stack小于0,则不满足建立时间,也就会产生不稳定态,并通过寄存器传输下去。

    

  图 7 建立时间时序分析图

  2、保持时间的分析

  如图 8所示,保持时间的分析是以第二个launch Edge为基准,在Latch Edge查看结果。保持时间的裕量:

  Hold Stack = (Tclk1+Tco+Tdata) – Tclk2 – Th

  假设△T = Tclk2-Tclk1,则:

  Hold Stack = (Tco+Tdata) – △T – Th

  可见△T>0影响保持时间,使保持时间的要求更加苛刻。。因此对于△T尽量避免,采用同步单时钟,并且尽量采用全局的时钟信号,这样△T几乎为0,,△T的影响几乎不存在,可以忽略不计。

  如果保持时间的裕量Hold Stack小于0,则不满足保持时间,也就会产生不稳定态,并通过寄存器传输下去。

    

  图 8 保持时间时序分析图

  五、DT6000S项目实例

  DT6000S项目上有4路光以太网接口连接到FPGA,由FPGA进行实现MAC层和解码IEC61850的SV和GOOSE。以太网PHY通过MII接口和FPGA,因此FPGA与外部的接口有4路MII接口。项目初期是实现1路光以太网接口,并且验证功能正确之后,但是后期变成的4路光以太网时,总会存在1路光以太网通信不正常。经过分析得到是FPGA通MII接口和PHY的时序不满足。如图 9所示为MII接口的时序图,时序不满足分为TX_CLK和RX_CLK。

  其一是PHY输出的TX_CLK和FPGA依据TX_CLK产生的TXD[3:0]&TX_EN延时大,主要延时为内部逻辑的延时,PCB延时小并且一致,导致PHY的TX_CLK的建立时间不满足,从而导致发送数据错误。

  其二是PHY输出的RX_CLK和RXD[3:0]&RX_DV&RX_ER到FPGA内部同步触发器的延时之差太大,导致FPGA内部同步触发器的RX_CLK的建立时间不满足,从而导致接收数据错误。

  因此FPGA在综合时需要添加约束,使之时序满足要求,约束的条件为TXD[3:0]和TX_EN的输出延时要少。RX_CLK和RXD[3:0]&RX_DV&RX_ER路径延时之差要小。添加约束之后,4路MII接口的光以太网数据通信就正常了。

    

  图 9 MII时序图

  这里阐述了时序分析基础,说明概念的同时进行了时序分析,通过时序分析理解建立时间和保持时间。希望大家阅读本文之后可以对FPGA时序分析有进一步的了解。

 
推荐公开课
[江苏回流焊和通孔回流焊(THD)的SMT
[广东NPI新产品导入
[江苏PCBA的可制造性设计(DFM)实施
[广东光学镜头测试培训
[广东在软件开发流程中构筑软件质量-软件测
[广东嵌入式软件可靠性设计培训
[广东电路设计中器件选型及工程计算培训课程
[上海面向可制造性的设计与工艺优化
[江苏ESD检验员职业资格(防静电系统高级
[广东硬件测试管理
推荐内训课
[广东SMT核心工艺技术、质量控制与案例解
[广东“倒装焊器件(BGA\WLP\QFN
[广东照相模组的设计工艺、组装技术和失效分
[河北硬件测试技术及信号完整性分析
[山西电子产品实用可靠性设计和试验技术高级
[广东SMT组装中的实用可制造性(DFM)
[上海电磁兼容设计与整改对策及经典案例分析
[广东板级电磁兼容设计与整改对策分析培训
[广东非财务经理的财务管理必修课
[广东电路设计中器件选型及工程计算
资讯中心
·2016年公务员考试申论指导:公文写作行
·黑龙江公务员考试申论指导:公文写作行文规
·盘点网友总结的政府公文写作常用词汇短语
·[嘉定]新成路街道创新发展志愿服务团队建
·山东推进现代农业创新团队建设 专项资金增
·陕西省科技厅启动重点科技创新团队建设
·美媒:印尼新总统谈判技巧丰富执政或可有作
·面见投资人 你应该知道的谈判技巧
·他的成功秘诀在于他的谈判技巧
·论PMP认证对个人的发展
·PMP中如何做好战略管理?
·PMP培训费用不同,光环国际怎么说

 

中国电子标准协会培训中心专业提供可靠性设计、热设计、SMT工艺、电路设计、架构设计、硬件测试、研发管理、嵌入式软件测试、EMC培训、软件技术等课程及服务。
欢迎来电来函咨询:
0755-26506757 13798472936
martin@ways.org.cn
http://www.ways.org.cn

中国电子标准协会培训中心(深圳市威硕企业管理咨询有限公司)成立于2006年,经过十多年的发展,在国内外业界技术顾问及广大客户的支持下,我培训中心已成为一家专业的电子技术、研发、管理、企业资格及电子标准培训服务提供商,致力为各企业提供成熟的企业技术、管理及标准培训服务。借鉴国际先进的电子技术应用与管理理念,让协会整合以“技术”为核心的企业资源体系,解决企业运营过程中的技术难题,提升生产、运作与工作效率,增强企业核心能力,赢得竞争优势,最终实现企业长期追求的使命与愿景。
经典课程:可靠性设计各种设计技术(包括可靠性降额设计、硬件测试、可靠性余度设计、可靠性动态设计、电路设计、可靠性环境防护设计、EMC培训、热设计、硬件测试、可靠性安全设计、缓冲减振设计、静电防护设计等)、SMT技术管理培训、EMC培训、硬件测试、IPC标准(IPC-A-610E标准、IPC-A-7711/21标准、IPC-A-620A标准、IPC-A-600H标准、IPC J-STD-001标准)、电路设计、硬件测试、ESD防静电防护、ESD设计、硬件测试、EMC培训、电路设计、硬件测试技术及信号完整性分析、硬件测试、DFM电子可制造性设计、机械结构设计、加速试验和筛选技术和模拟仿真技术、硬件测试、EMC培训、失效分析、EMC培训、电路设计、EMC培训、故障模式影响及危害性(FMEA、FMECA)和故障树分析(FTA)、元器件可靠性设计、硬件测试、电路设计、软件可靠性设计、硬件测试、软件测试(黑盒和白盒)、电路设计、可靠性设计各种试验技术(环境应力筛选试验、EMC培训、硬件测试、可靠性工程试验、可靠性统计试验等)以及可靠性管理是我协会的强项;软件类:架构设计、EMC培训、硬件测试、C语言、电路设计、UI设计、硬件测试、需求分析、电路设计、软件项目管理、硬件测试、电路设计、Oracle、软件敏捷、.NET、EMC培训、硬件测试、Android、硬件测试、软件配置管理、Linux、硬件测试、CMMI、软件重构、C++等等

服务热线:0755-33558698 26506757 传真:0755-33119039 电子邮件:martin@ways.org.cn
客服 QQ:52630255 751959468 1305933375 385326049
中国电子标准协会培训中心(http://www.ways.org.cn)网站 ICP注册号:ICP备257378787号